tnfh.net
当前位置:首页 >> 泰勒展开 >>

泰勒展开

参考过程。

泰勒公式:f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)^2+...+f(n)(a)/n!*(x-a)^n现在f(x)=1/(1-x),求导得到f'(x)= -1/(1-x)^2 *(-1)=1/(1-x)^2,f''(x)= -2/(1-x)^3 *(-1)=2/(1-x)^3,以此类推得到fn(x)=n! /(1-x)^(n+1)代入a=0,那么f(0)=1,f...

根号下(1+x)泰勒公式展开为 f(x)=1+1/2x-1/8x²+o(x^3) 方法一:根据泰勒公式的表达式 然后对根号(1+x)按泰勒公式进行展开。 方法二:利用常见的函数带佩亚诺余项的泰勒公式 将a=1/2代入,可得其泰勒公式展开式。 扩展资料:1、麦克劳...

泰勒公式展开式: 对于正整数n,若函数 在闭区间上 阶连续可导,且在 上 阶可导。任取 是一定点,则对任意 成立下式: 其中, 表示 的n阶导数,多项式称为函数 在a处的泰勒展开式,剩余的 是泰勒公式的余项,是 的高阶无穷校 麦克劳林公式 是泰...

不是的。函数能泰勒展开的必要条件是在展开点附近任意阶可导,充分条件是余项能趋于零。

泰勒公式: f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2+...+f(n)(x0)/n!*(x-x0)^n 定义: 泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数 在某一点的各阶导数值的情况之下,泰勒公式可以用这些导...

您好,答案如图所示: 这个展开没有捷径,你只能逐个化简了,小心一点就是 很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。☆⌒_⌒☆ 如...

泰勒展开是可以有限项的,这时是精确表达。 y=x³ 本身就是泰勒形式(麦克劳林形式)。 泰勒展开就是用幂级数,拟合任意曲线。 也可以用任何一点x0,x0³展开: y=x³ y0=x0³ y-y0=x³-x0³=(x-x0)(x²+xx0+x0&...

如图:(注意“麦克劳林级数”是“泰勒级数”的特殊形式,是展开位置为0的泰勒级数) 附上泰勒级数展开式公式:

网站首页 | 网站地图
All rights reserved Powered by www.tnfh.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com